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abstract. We construct a bad field in characteristic zero. That is, we con-
struct an algebraically closed field which carries a notion of dimension analo-
gous to Zariski-dimension, with an infinite proper multiplicative subgroup of
dimension one, and such that the field itself has dimension two. This answers
a longstanding open question by Zilber.

1. Introduction

Morley rank is a model-theoretical generalization of Zariski dimension which
can be extended to definable sets in any mathematical structure. A structure is
called ω-stable if Morley rank is ordinal-valued. Morley degree is the analogous
to the number of irreducible components of maximal Zariski dimension. An early
conjecture due to B. Zilber stated that a structure of both Morley rank and degree
1 (called a strongly minimal set) arose from a classical geometry: the trivial (or de-
generated) one, a vector space geometry or Zariski geometry over an algebraically
closed field. This conjecture was refuted in 1988 by E. Hrushovski [11], who mod-
ified in a clever way Fräıssé’s original construction of the universal homogeneous
model of a hereditary class of finite relational structures with the amalgamation
property. This method was later divided by B. Poizat and J. B. Goode [8] into
two steps: first, the construction of a generic structure of rank ω and secondly, the
collapse to a strongly minimal set. This procedure has been used in several appli-
cations: for example, E. Hrushovski fused two strongly minimal sets with definable
Morley degree in disjoint languages into a strongly minimal set [10] (cf. also [3]);
it follows in particular that there exist a strongly minimal set which supports two
field structures (even in different characteristics) with as little interaction as pos-
sible. In the aforementioned article, he also mentioned that this procedure could
also be generalized to the case where both strongly minimal sets were expansions
of a common vector space structure over a finite field. The fusion over a vector
space was first proved by the second author and A. Hasson [9] in the 1-based case
(moreover, they also studied the non-collapsed fusion of rank ω). The collapse to a
strongly minimal fusion was attained finally by the first and third authors together
with M. Ziegler [4]. Using similar arguments they also proved [5] the existence of
a field of arbitrary prime characteristic of Morley rank 2 equipped with a definable
additive subgroup of rank 1 after collapsing Poizat’s red fields [16] of rank ω · 2. In
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particular, there is a strongly minimal set with one addition and two independent
multiplications.

Bad fields are fields of finite Morley rank equipped with a predicate for a non-
trivial proper divisible multiplicative subgroup. They appeared first in the study of
simple groups of finite Morley rank, whose Borel subgroups (i.e. maximal solvable
subgroups) are of the form K+⋊T with 1 < T < K×. According to the algebraicity
conjecture due to Cherlin-Zil’ber (an algebraic variation of Zilber’s above conjec-
ture) a simple infinite group of finite Morley rank is algebraic. The non-existence
of bad fields would simplify the study of Borel subgroups. Due to a result by the
fourth author [17, 18] bad fields are unlikely to exist in positive characteristic. After
applying deep results due to J. Ax [1], B. Poizat [16] found a candidate of rank ω ·2
with a multiplicative subgroup of rank ω based on his construction [15] of a field of
rank ω · 2 equipped with a definable set of rank ω; the latter is a counterexample
to a conjecture due to C. Berline and D. Lascar, which asserts that the rank of a
field (if ordinal) should be a monomial of the form ωα. Using amalgamation, Poizat
[15] also obtained collapsed structures. J. Baldwin and K. Holland showed in [2]
that these structures are ω-saturated under certain assumptions and thus ω-stable
of Morley rank 2. Together with M. Ziegler, the first and third author summarized
and completed [6] the above results and exhibited a simpler axiomatization. Let us
remark that a field of ordinal Morley rank is algebraically closed [13].

Following Poizat’s notation we denote the predicate for the multiplicative sub-
group by green (an additive subgroup is red, and a subset black). In this article we
collapse the green fields and therefore obtain a bad field in characteristic 0. This
construction is extremely related to the red collapse [5]; however we will use results
due to Ax-Poizat instead of locally finiteness of Fp-vector spaces.

We thank the referee for his detailed comments and for his questions, too. Un-
fortunately, we were not able to reply to all of them. This is ongoing work.

2. Algebraic Lemmata

This section summarizes results coming from algebraic geometry which will be
needed for our purposes. Let us fix some notation: C denotes an algebraically closed
field of characteristic 0. A variety V will always be a subvariety of some cartensian
product (C∗)n. A torus is a connected algebraic subgroup of (C∗)n. It is described
by finitely many equations of the form: xr1

1 · . . . · xrn
n = 1. Linear dimension

(as Q-vector spaces modulo torsion) equals algebraic dimension (as varieties) for
tori which we will denote as l. dimQ(T ) or dim(T ). Given a closed irreducible
subvariety V in (C∗)n, its minimal torus is the smallest torus T such that V lies
in some coset ā · T (with ā ∈ V ). In this case, we define the codimension of an
irreducible variety V as cd(V ) := dim(T ) − dim(V ) = l. dimQ(V ) − dim(V ), where
l. dimQ(V ) := dim(T ). A subvariety W ⊆ V is cd-maximal if cd(W ′) > cd(W )
for every subvariety W ( W ′ ⊆ V . Clearly, irreducible components of V and tori
cosets maximally contained in V are examples of cd-maximal subvarieties.

Fact 2.1. A connected algebraic subgroup of a torus is again a torus.

We now state a result proved by B. Poizat [16, Corollaires 3.6 und 3.7]:

Theorem 2.2. Let V (x̄, z̄) be a uniformly definable family of varieties in (C∗)n.
There exists a finite collection of tori {T0, . . . , Tr}, such that for any torus T ⊆
(C∗)n, any member Vb̄ = V (x̄, b̄) of the family and any irreducible component W
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of Vb̄ ∩ ā · T (with ā in W ) there is some i in {0, . . . , r} with W ⊆ ā · Ti and
dim(Ti) − dim(V ∩ ā · Ti) dimT − dimW .

Moreover, the minimal torus of every cd-maximal subvariety of Vb̄ belongs to the
collection {T0, . . . , Tr}.

We will assume throughout this article that the above tori are all distinct, and
T0 = (C∗)n and T1 = {1}n.

Note 2.3. Only the second claim of theorem 2.2 is needed for our purposes.

Note 2.4. The content of 2.2 is false in positive characteristic. We thank M. Bays
and B. Zilber for the following example. Let K be an algebraically closed field of
characteristic p > 0 and let V ⊆ (K∗)4 be defined by the equations x+ y = 1 and
z+u = 1. For n ∈ N let Tn ⊆ (K∗)4 be the torus defined by the equations zpn

= x
and upn

= y. It is easy to show:

• V is irreducible, with dim(V ) = 2 and cd(V ) = 2;
• Xn := V ∩Tn is an irreducible curve with minimal torus Tn, and cd(Xn) = 1

holds;
• Xn is a cd-maximal subvariety of V .

A family of tori with the properties as in in 2.2 would necessarly contain all tori
Tn, which are all distinct.

Corollary 2.5. Let V (x̄, z̄) be a uniformly definable family of varities. Then:

(1) If T is the minimal torus of Vb̄, there exists some θ(z̄) ∈ tp(b̄), such that
T is the minimal torus of every Vb̄′ with |= θ(b̄′). In particular, there is a
definable neighbourhood of b̄ where l. dimQ and cd remain constant.

(2) Suppose V (x̄, b̄) decomposes into m irreducible components Wk with dk :=
dim(Wk), lk := l. dimQ(Wk) and ck := cd(Wk). Then, there is some θ(z̄) ∈
tp(b̄) such that for all b̄′ |= θ we have that Vb̄′ decomposes into exactly m
irreducible components (W ′

k : 1 ≤ k ≤ m) and (possibly after permutation)
dim(W ′

k) = dk, l. dimQ(W ′
k) = lk and cd(W ′

k) = ck.

Proof. The first claim follows from 2.2, since irreducible components are cd-maximal.
So their minimal tori lie in {T0, . . . , Tr}.

It is a classical result (see e.g. [7]) that the decomposition of a variety in its
irreducible components is definable. Part (2) thus follows from part (1). �

3. δ-Arithmetic

Let now C denote a large algebraically closed field of characteristic 0, i.e. a
universal model of ACF0. We consider the reduct Lmult := {·, 1, 0,=} ⊆ LRing =
{+, ·, 1, 0,=} and Tmult := ThLmult

(C). The prime model of Tmult is obtained by
adjoining 0 to the set of roots of unity µ(C) ⊆ C. The structure so obtained is Lmult-
isomorphic to Q/Z (multiplicatively), after adding a new element. In particular,
Tmult is modular non-trivial, and its geometry is projective over Q.

Given A ⊆ C, denote by 〈A〉 the divisible hull ofA∗ := A\{0} in C∗ together with
0, equivalently, the algebraic closure of A in C with respect to Lmult. This yields
the prime model of Tmult over A. For a tuple ā ∈ C∗ we have that MR (ā) in Tmult

agrees with its linear dimension over Q (modulo torsion). We will write l. dimQ(ā),
and let dim(ā/B) denote Morley rank in ACF0, equivalently, the dimension of its
locus over B. The latter agrees with the transcendence degree of ā over B.
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Consider now 〈·〉-closed subsets B of C as an LRing-structure. Generally these
structures need not be subfields of C, however we will (after a possible Morleyzation
LMorley of ACF0 consisting of Lmult and relational symbols) formally work with
these structures. Therefore, we will consider addition on 〈·〉-closed sets and refer
to their fraction fields, their algebraic closure, etc. However this shall not confuse
the unfortunate reader. Let D be the class of such structures as above described.
Embeddings in D are elementary embeddings as LRing-structures, i.e. LMorley-
embeddings. A structure A ∈ D is finitely generated over B ⊆ A if A = 〈āB〉 for
some finite tuple ā ∈ A. Finitely generated elements of D over B correspond to
divisible hulls of subgroups of C∗ of finite rank over 〈B〉 (adjoining 0). In case that
〈AB〉 is finitely generated over 〈B〉, we define

δ(A/B) := 2 dim(A/B) − l. dimQ(A/B).

Clearly, δ(A/B) equals δ(〈AB〉/〈B〉). Since Tmult is modular, the following holds:

Lemma 3.1.

(1) δ(āb̄/C) = δ(b̄/C) + δ(ā/b̄C).
(2) Given C ⊆ B ∈ D, we have that δ(ā/B) ≤ δ(ā/B∩〈Cā〉). (Submodularity)

Lemma 3.2. Given ā and B, let W be the locus of ā over acl(B). Then:

δ(ā/ acl(B)) = dim(W ) − cd(W )

Moreover,

δ(ā/B) = dim(W ) − cd(W ) − l. dimQ(〈āB〉 ∩ acl(B)/B).

Proof. For the first claim it suffices to observe that the smallest torus coset (over
an algebraically closed set B) containing ā is B-definable in Lmult. Hence, its
dimension equals l. dimQ(ā/B). Modularity of Tmult gives the second statement. �

Definition 3.3.

• Let M ⊆ N ∈ D with l. dimQ(N/M) = n ≥ 2. The extension N/M is
minimal prealgebraic (of length n) if δ(N/M) = 0 and δ(N ′/M) > 0 for
every N ′ = 〈N ′〉 ∈ D with M ( N ′ ( N .

• Let B ⊆ C. A strong type p(x̄) ∈ Sn(B) (in ACF0) is minimal prealgebraic,
if the extension 〈Bā〉/〈B〉 is minimal prealgebraic of length n for some ā |= p
(in particular, ā is multiplicatively independent over B).

• A formula ϕ(x̄) of Morley degree 1 is minimal prealgebraic if its generic
type is minimal prealgebraic.

Note 3.4.

• The condition δ(N ′/M) > 0 is equivalent to δ(N/N ′) < 0 since 0 =
δ(N/M) = δ(N/N ′) + δ(N ′/M).

• If N/M is minimal prealgebraic and n̄ is a multiplicative basis of N over
M , then stp(n̄/M) is minimal prealgebraic.

• Minimal prealgebraicity is invariant under parallelism class and multiplica-
tive translation for strong types. In particular, the notion of minimal pre-
algebraic for stationary formulae in Definition 3.3 is well-defined.
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4. Codes

We first aim to encode minimal prealgebraic extensions. Note that every strong
type is the generic type of some variety. Hence, we can define the following:

Definition 4.1. A variety V = V (x̄, b̄) is a code variety if it is minimal prealgebraic.
Equivalently, if for all B = 〈B〉 ∋ b̄ the extension B ⊆ 〈Bā〉 is minimal prealgebraic
for some B-generic ā ∈ V .

Note that a multiplicative translation of a code variety is again a code variety.
Let M ∈ D and N = 〈Mā〉 where tp(ā/M) is minimal prealgebraic of length

n. Consider N ′ = 〈N ′〉 with M ( N ′ ( N . Modularity of Tmult yields some
Lmult-basis ā′ ∈ 〈ā〉 for N ′ over M of length m. Modulo torsion we have that

a′j =
∏

a
λij

i for some λij ∈ Q. After substitution with suitable powers or roots, we

may assume that λij ∈ Z and (λij)i<n are coprime for j < m. Then, the equations

(
∏

i<n x
λij

i = 1 : j < m) determine a torus T of dimension d = n −m. Since T is
∅-definable, it follows that ā′ is the canonical basis [āT ] of the coset āT .

Similarly, given a torus T in (C∗)n of dim(T ) = d, the element ā′ := [āT ]
generates a substructure N ′ := 〈Mā′〉 ⊆ N with l. dimQ(N ′/M) = m = n− d.

Lemma 4.2. Let V (x̄, b̄) ⊆ Cn be an irreducible variety, T ⊆ Cn some torus and
ā in V generic over B ∋ b̄. Then, an element ā1 ∈ W := V ∩ āT is generic in W
over B[āT ] if and only if it is generic in Vb̄.

Proof. Note that ā′ := [āT ] is definable multiplicatively over any ā2 ∈ āT . In
particular, it is definable over ā1 ∈W . Hence:

dim(ā1/Bā
′) = dim(ā1ā

′/B) − dim(ā′/B) dim(ā1/B) − dim(ā′/B)

≤ dim(ā/B) − dim(ā′/B) = dim(ā/Bā′),

which proves the claim. �

The following result was already stated in [16]; however we exhibit a proof for
completeness since similar ideas will appear later on.

Lemma 4.3. Let V (x̄, z̄) be a uniformly definable family of varieties. If Vb̄ =
V (x̄, b̄) is a code variety then there is a formula θ(z̄) ∈ tp(b̄) such that Vb̄1

is a code

variety for every b̄1 |= θ.

Proof. Let {T0, . . . , Tr} be the collection of tori associated to V (x̄, z̄) as in 2.2. Take
some B containing b̄. Set

n = l. dimQ(Vb̄) = 2k

k = dim(Vb̄).

Clearly 〈Bḡ〉 ∩ acl(B) = 〈B〉 for B–generic ḡ ∈ Vb̄.
Let θ(z̄) express:

(1) dim(Vz̄) = k and l. dimQ(Vz̄) = n (in particular Vz̄ 6= ∅),
(2) given generic ḡ in Vz̄ , i = 2, . . . , r and W some irreducible component of

V ∩ ḡTi of maximal dimension, then cd(W ) > dim(W ) if V ∩ ḡTi is infinite.

The existence of such a formula θ follows from Corollary 2.5.
Now we show that |= θ(b̄). Let ḡ in Vb̄ be generic and take T 6= T0, T1 some torus

with V ∩ ḡT infinite. Choose some irreducible component W ⊆ V ∩ ḡT of maximal
dimension. By Lemma 4.2 we have that ḡ is generic in W over acl((b̄, [ḡT ]). Hence,
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ḡ /∈ acl(b̄, [ḡT ]) and [ḡT ] /∈ acl(b̄). By Lemma 3.2 and miminal prealgebraicity of
the extension 〈ḡb̄〉/〈b̄〉

dim(W ) − cd(W ) = δ(〈ḡb̄〉/ acl(b̄, [ḡT ])) = δ(〈ḡb̄〉/ acl(b̄, [ḡT ]) ∩ 〈ḡb̄〉)) < 0.

Now let b̄1 |= θ and ḡ generic in Vb̄1
over B1 ∋ b1. Condition (1) in θ(z̄) yields

δ(ḡ/B1) = 0. We need only show that δ(ḡ/[ḡT ], B1) < 0 for every torus T with
1 ≤ d := dim(T ) ≤ n−1. Set ḡ′ := [ḡT ] and let W be the locus of ḡ over acl(B1ḡ

′).
We consider three cases:

Case 1: ḡ ∈ acl(B1ḡ
′), i.e. W is a point. Then

δ(ḡ/B1ḡ
′) = − l. dimQ(ḡ/B1ḡ

′) l. dimQ(ḡ′/B1) − l. dimQ(ḡḡ′/B1)

= l. dimQ(ḡ′/B1) − l. dimQ(ḡ/B1) = (n− d) − n = −d < 0.

Case 2: cd(W ) = cd(Vb̄1
). Since W ( Vb̄1

and by Lemma 3.2

δ(ḡ/B1ḡ
′) ≤ dim(W ) − cd(W ) < dim(Vb̄1

) − cd(Vb̄1
) = 0.

Case 3: W is infinite and cd(W ) < cd(Vb̄1
). Choose someW ⊆ W̃ ⊆ Vb̄1

irreducible

maximal such that cd(W̃ ) ≤ cd(W ). Then, W̃ is cd-maximal with minimal Torus
Ti in the above collection. Note that i 6= 0 because cd(W ) < cd(Vb̄1

), and i 6= 1

because W is infinite. So, W̃ ⊆ V ∩ ḡTi. Take now some irreducible component
W̃ ⊂ W̃ ′ of V ∩ ḡTi of maximal dimension. By cd-maximality cd(W̃ ′) > dim(W̃ ′).
So

δ(ḡ/B1ḡ
′) ≤ dim(W ) − cd(W ) ≤ dim(W̃ ) − cd(W̃ ) ≤ dim(W̃ ′) − cd(W̃ ′) < 0.

�

The above proof points out how to find — uniformly — a generic (definable)
subset ϕ1(x̄, b̄) of a code variety V (x̄, b̄) such that ϕ1(x̄, b̄) is strongly minimal in
the theory Tω of the generic (non-collapsed) green field in case we color x̄ green.
Given a uniformly definable family V (x̄, z̄) of code varieties whose associated tori
are {T0, . . . , Tr} as in 2.2, we can define ϕ1(x̄, z̄) ⊆ V (x̄, z̄) as follows:

• ā ∈ Vb̄ realizes ϕ1(ā, b̄) if and only if for i = 2, . . . , r the following condition
holds: In case Vb̄ ∩ āTi is infinite then cd(W ) > dim(W ) for all irreducible
components W of Vb̄ ∩ āTi of maximal dimension.

The above condition is definable by Corollary 2.5.

Lemma 4.4. Let (Vz̄(x̄) : z̄ |= θ) be a family of code varieties and ϕ1(x̄, z̄) be as
above. Then ϕ1(x̄, b̄) is generic in Vb̄ for b̄ |= θ. Moreover, for all ā |= ϕ1(x̄, b̄) and
B ∋ b̄ the following holds:

(1) δ(ā/B) ≤ 0.
(2) If δ(ā/B) = 0, then either ā ∈ 〈B〉 or ā is generic in Vb̄ over B.

Proof. The proof of Lemma 4.3 shows that ϕ1(x̄, b̄) is generic in Vb̄. Suppose
now that ā is neither generic in Vb̄ nor contained in 〈B〉. We need to show that
δ(ā/B) < 0. Let W be its locus over acl(B). As in the previous proof, we consider
three cases:
Case 1: ā ∈ acl(B) (equivalently, W is a single point). Then,

δ(ā/B) = − l. dimQ(ā/B) < 0.

Case 2: W is infinite with cd(W ) = cd(Vb̄). As above W ( Vb̄, so δ(ā/B) ≤
dim(W ) − cd(W ) < dim(Vb̄) − cd(Vb̄1

) = 0.



DIE BÖSE FARBE 7

Case 3: W is infinite with cd(W ) < cd(Vb̄). A similar argument as in 4.3 yields the
claim. Remark that the conditions on genericity and θ are now part of ϕ1(x̄, b̄). �

Given two formulae ϕ(x̄) and ψ(x̄) we write ϕ(x̄) ∼ ψ(x̄) if the Morley rank
of their symmetric difference is less than MR(ϕ(x̄)). Therefore MR(ϕ) = MR(ψ)
and ∼ ist symmetric. Let p be a minimal prealgebraic (strong) type, B some set
of parameters and ḡ |= p|B. Then ḡ is a Lmult-basis of the minimal prealgebraic
extension 〈B〉 ⊆ 〈Bḡ〉. Moreover, dim(ḡ/B) = k = n

2 and δ(ḡ/[ḡT ], B) < 0 for every
torus T different from T0 and T1. Minimal prealgebraic extensions are preserved
under affine transformations (which correspond to bases change in Lmult). Same
holds for strong types as well as degree 1 formulae. Let us explain this carefully:
consider C∗ as a Q-vector space modulo torsion. Then, the group GLn(Q) acts
on the set of strong types modulo torsion. If X1 and X2 are two definable sets
in (C∗)n of degree 1 and T ⊆ (C∗)n × (C∗)n is an n-dimensional torus such that
(X1 ×X2) ∩ T projects generically onto both X1 and X2, then T induces a toric
correspondence between X1 and X2. The following holds:

Lemma 4.5. Let ϕ(x̄) be minimal prealgebraic.

• If there is a toric correspondence between ϕ(x̄) and some formula ψ(x̄) of
Morley degree 1, then ψ(x̄) is also minimal prealgebraic.

• Let m̄ ∈ (C∗)n. Then ϕ(x̄ · m̄) is minimal prealgebraic. �

Definition 4.6. Let X ⊆ (C∗)n be definable set of degree 1. A formula ϕ(x̄, z̄) and
a torus T encode X if there is some b̄ such that T induces a toric correspondence
between ϕ(x̄, b̄) and X . We say that ϕ encodes X if the above correspondence is
the identity (i.e. ϕ(x̄, b̄) ∼ X).

Definition 4.7. A code α are integers nα, kα and a ∅-definable formula ϕα(x̄, z̄)
satisfying the following:

(a) The length of x̄ is nα = 2kα.
(b) ϕα(x̄, b̄) is a subset of (C∗)nα .
(c) ϕα(x̄, b̄) is either empty or has Morley rank kα and Morley degree 1.
(d) If ϕα(x̄, b̄) 6= ∅, then ϕα(x̄, b̄) is minimal prealgebraic with irreducible Zariski

closure Vα(x̄, b̄).
(e) Suppose ϕα(x̄, b̄) 6= ∅. Then δ(ā/B) ≤ 0 for every b̄ ∈ B and ā |= ϕα(x̄, b̄).

Moreover, δ(ā/B) = 0 if and only if ā ∈ 〈B〉 or ā is B-generic in ϕα(x̄, b̄).
(f) ϕα(x̄, z̄) encodes every multiplicative translate of ϕα(x̄, b̄).
(g) If ∅ 6= ϕα(x̄, b̄) ∼ ϕα(x̄, b̄′), then b̄ = b̄′.

If follows from (g) that b̄ is the canonical basis of the minimal prealgebraic type
determined by ϕα(x̄, b̄).

Lemma 4.8. Every minimal prealgebraic definable set X can be encoded by some
code α.

Proof. Let Vα(x̄, b̄) be the variety associated to X . Then Vα(x̄, b̄) is a code variety.
By Lemma 4.3 there is some formula θ(z̄) such that Vα(x̄, b̄′) — and all its multi-
plicative translates — is a code variety for b̄′ |= θ. Let now ϕ1(x̄, z̄) ⊆ Vα(x̄, z̄) be
as in in Lemma 4.4. Note that for every multiplicative translate Vα(x̄ · m̄, z̄) the
corresponding translate ϕ1(x̄ · m̄, z̄) ⊆ Vα(x̄ · m̄, z̄) yields the claim in Lemma 4.4.
Set now

ϕα(x̄, z̄z̄′) := V (x̄ · z̄′, z̄) ∧ ϕ1(x̄ · z̄′, z̄) ∧ θ(z̄).
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Therefore, ϕ encodes X and satisfies properties (a)-(f).
By definability of ∼-equivalence and elimination of imaginaries we may assume

that ϕ also satisfies (g). �

Set now θα(z̄) := ∃x̄ ϕα(x̄, z̄).

Lemma 4.9. Let α and β be codes. Then there is a finite set G(α, β) of tori in
(C∗)2nα such that if ϕα(x̄, b̄) 6= ∅ and T induces a toric correspondence between
ϕα(x̄, b̄) and ϕβ(x̄, b̄′), then T ∈ G(α, β).

Proof. If there is no such toric correspondence between any instances of α and β,
then set G(α, β) := ∅. Otherwise, let T , b̄ and b̄′ as above. Let Vα (resp. Vβ) be
the family of code varieties associated to α (resp. β). Moreover, let {T0, . . . , Tν}
be the finite collection of tori as in 2.2 for Vα ×Vβ . Set B := acl(b̄b̄′). Choose some
B–generic point (ā, ā′) in (Vα(x̄, b̄) × Vβ(x̄′, b̄′)) ∩ T .

Let W ⊆ (Vα × Vβ) ∩ T be the locus of (ā, ā′) over B. Then T is the minimal
torus of W , and dim(W ) = cd(W ) = kα.

If we show thatW ⊆ (Vα×Vβ) is cd-maximal, then T lies in {T0, . . . , Tν}. Choose
now some variety W ( W ′ ⊆ (Vα × Vβ). We may assume that W ′ is B–definable.
If (ḡ, ḡ′) is B–generic in W ′, then cd(W ′) = l. dimQ(ḡ, ḡ′/B)−dim(ḡ, ḡ′/B). Hence,

cd(W ′) = [l. dimQ(ḡ/B) − dim(ḡ/B)] + [l. dimQ(ḡ′/Bḡ) − dim(ḡ′/Bḡ)]

= cd(W ) + l. dimQ(ḡ′/Bḡ) − dim(ḡ′/Bḡ) > cd(W ) − δ(ḡ′/Bḡ) ≥ cd(W ).

The proper inequality follows from dim(ḡ′/Bḡ) > 0 because W ( W ′. The last
inequality follows from the fact that ḡ′ is B–generic in Vβ , so it also realizes ϕβ(x̄, b̄′).

�

Theorem 4.10. There exists a collection C of codes such that every minimal pre-
algebraic definable set can be encoded by a unique element α in C and finitely many
tori.

Proof. The collection C will be obtained as an increasing union of finite sets con-
structed by recursion. Encode first all minimal prealgebraic subsets of (C∗)n for
every n. Fix some n ≥ 2 and list all minimal prealgebraic subsets (Xi : i < ω) of
(C∗)n up to isomorphism. Let α0 encode X0 as in 4.8. Define C0 = {α0}.

Suppose by induction that Ci has been already defined encoding all Xj ’s with
j ≤ i. If Xi+1 can be encoded by some element in Ci and some torus T , then set
Ci+1 = Ci. Otherwise find some code αi+1 and b̄0 as in 4.8 encoding Xi+1. Define:

ρ(z̄) := ∀ȳ





i
∧

k=0

∧

T∈G(αk,αi+1)

¬χT
αk,αi+1

(ȳ, z̄)



 ,

where χT
α,β(b̄, b̄′) expresses that T induces a toric correspondence between ϕα(x̄, b̄)

and ϕβ(x̄, b̄′) (this is a definable condition).
Now, ϕα̂(x̄, z̄) := ϕαi+1

(x̄, z̄) ∧ ρ(z̄) satisfies properties (a)–(g) in Definition 4.7.

We claim that it also satisfies property (f). Let m̄ be in (C∗)n such that ϕα̂(x̄ ·m̄, b̄)
cannot be encoded by ϕα̂. Equivalently, there are some k ≤ i and some torus
T ∈ G(αk, αi+1) such that T induces a toric correspondence between ϕαk

(x̄, b̄1)
and ϕαi+1

(x̄ · m̄, b̄). Find m̄1 ∈ (C∗)nα with (m̄1, m̄) ∈ T . Then T induces a toric

correspondence between ϕαk
(x̄ · m̄−1

1 , b̄1) and ϕαi+1
(x̄, b̄). By property (f) the set
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ϕαk
(x̄ · m̄−1

1 , b̄1) can be encoded by ϕαk
, which yields a contradiction. Hence, set

Ci+1 = Ci ∪ {α̂}.
Given some minimal prealgebraic definable set X , there is some Xi such that

X and Xi are isomorphic. By construction, there exists a unique code α ∈ C and
finitely many tori which encode Xi (and hence X): finiteness of the set of tori
follows from G(α, α) being finite (see Lemma 4.9). �

Definition 4.11. A good code is an element of C.

5. Difference sequences

Recall the following result due to M. Ziegler (in a more general setting) in un-
published work [19].

Lemma 5.1. Let A be an algebraically closed subset. If the tuples ā, b̄ and ā · b̄
are pairwise independent over A, then tp(ā/A) is the generic type of an A-definable
coset of a torus.

This result is extremely relevant for our purposes due to an observation by
Mustafin [14, Proposition 3.1], who noticed that no code variety could be a coset
of a torus :

Lemma 5.2. Let V be a code variety. Then its multiplicative stabiliser is finite.
In particular, V is no coset of a torus.

Proof. For V = V (x̄, b̄) as above, choose T = stab(V )0 the connected component
of its multiplicative stabiliser. By construction T is a torus. Choose now generic
b̄-independent elements ḡ in V and ā in T . By definition, the element ā · ḡ is
generic in V over b̄. Therefore δ(ā/ḡ, b̄) = δ(ā/b̄) = dim(T ). On the other hand,
δ(ā · ḡ/ḡ, b̄) ≤ 0, since V is a code variety. Since ā · ḡ and ā are ḡb̄-interdefinable
(multiplicatively), it follows that dim(T ) = 0. �

Definition 5.3. Let (ē0, . . . , ēλ) a sequence of length λ+ 1. The ith derivation ∂i

maps
(ē0, . . . , ēλ)

to
(ē0 · ē

−1
i , . . . , ēi−1 · ē

−1
i , ē−1

i , ēi+1 · ē
−1
i , . . . , ēλ · ē−1

i ).

A sequence obtained after composing the operators (∂i)i≤λ finitely many times is
a difference sequence. If ν < λ and we only consider operators (∂i)i≤ν , then we call
the resulting sequence a ν–difference sequence.

Note 5.4. For every λ there exist only finitely many different derivations (precisely
(λ+ 2)! many). Moreover, the set of derivations of a given fixed sequence is closed
under permutations, since the transposition (ij) equals ∂j ◦ ∂i ◦ ∂j .

Fix for each α ∈ C a positive integer mα such that every b̄ |= θα lies in the
definable closure of some (any) Morley sequence of ϕα(x̄, b̄) of length mα.

Theorem 5.5. For every α in C and λ ≥ mα there is some formula ψα(x̄0, . . . , x̄λ)
(whose realizations will be called difference sequences) satisfying the following:

(h) If |= ψα(ē0, . . . , ēλ), then ēi 6= ēj for i 6= j.
(i) Given b̄ |= θα and a Morley sequence {ē0, . . . , ēλ, f̄} for ϕα(x̄, b̄), then

|= ψα(ē0 · f̄
−1, . . . , ēλ · f̄−1).
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(j) For any realization (ē0, . . . , ēλ) von ψα there exists a unique b̄ with |= ϕα(ēi, b̄)
for i = 0, . . . , λ. Moreover, b̄ lies in the definable closure of any segment of
length mα of the ēi’s. Hence, b̄ is called the canonical parameter of the sequence
ē0, . . . , ēλ.

(k) If |= ψα(ē0, . . . , ēλ), then |= ψα(ē0, . . . , ēλ′) for each mα ≤ λ′ < λ.
(l) Let i 6= j and (ē0, . . . , ēλ) be a realization of ψα with canonical parameter b̄ as

in (j). If there is some T in G(α, α) and ē′j with (ēj , ē
′
j) ∈ T , then ēi 6 |⌣ b̄

ē′j · ē
−1
i

in case ēi is a generic realization of ϕα(x̄, b̄).
(m) If |= ψα(ē0, . . . , ēλ), then |= ψα(∂i(ē0, . . . , ēλ)) for i ∈ {0, . . . , λ}.

Proof. We find ψα(x̄0, . . . , x̄λ) inductively in λ. Consider the following type-definable
property Σ(ē0, . . . , ēλ):

there exist some b̄′ and a Morley sequence ē′0, . . . , ē
′
λ, f̄ of ϕα(x̄, b̄′)

with ēi = ē′i · f̄
−1.

It is easy to see that Σ has properties (h)–(k) and (m). Note that (ēi : i ≤ λ) is a
Morley sequence over b̄′f̄ . In particular, its canonical parameter b̄ lies in dcl(b̄′f̄).
Let T ∈ G(α, α) and (ēj , ē

∗
j ) ∈ T . Then ē∗j ∈ acl(ēj), so ē∗j |⌣ b̄

ēi for i 6= j. If

ēi |⌣ b̄
ē∗j · ē−1

i , then ē−1
i , ē∗j and ē∗j · ē−1

i will determine a pairwise b̄–independent
triple, since

MR(ē∗j/b̄, ē
∗
j · ē

−1
i ) = MR(ē−1

i /b̄, ē∗j · ē
−1
i ) = MR(ē−1

i /b̄) = MR(ēj/b̄) = MR(ē∗j/b̄)

so ē∗j |⌣ b̄
ē∗j · ē

−1
i . By Lemma 5.1 the type tp(ē−1

i /b̄) will be the generic type of some

torus coset. Likewise for tp(ēi/b̄). This contradicts Lemma 5.2 since ēi is generic
in ϕα(x̄, b̄). Therefore, property (l) also holds.

Find now by compactness a finite set ψ0 in Σ which implies (h)-(l). Define

ψα(x̄0, . . . , x̄λ) :=
∧

∂ derivation

ψ0(∂(x̄0, . . . , x̄λ)).

�

6. Green up!

From now on we will consider an extension L∗ := LMorley ∪ {Ü}, where Ü is a
new unary predicate which determines the green coloring (from the german word

grün). An L∗-structure is a pair (A, Ü(A)) consisting of a structure A in D (i.e.

A = 〈A〉 ⊆ C) and a divisible torsion-free subgroup Ü(A) of A \ {0}, that is, a
Q-vector space. Given two L∗-structures B and A, we write B ⊆ A in case B ⊂ A
as elements of D and Ü(A) ∩B = Ü(B).

The δ-function introduced in Section 3 will be modified accordingly: Given an
L∗-structure A finitely generated with respect to 〈·〉, set

δ(A) := 2 dim(A) − l. dimQ(Ü(A)).

If B ⊆ A and A is f.g. over B, or more generally both l. dimQ(Ü(A)/ Ü(B)) and
dim(A/B) are finite, define

(6.1) δ(A/B) := 2 dim(A/B) − l. dimQ(Ü(A)/ Ü(B)).

This agrees with Poizat’s context (cf. [16, Section 3]). Hence,bases, generated,
linearly (in)dependent refer to the underlying Lmult-structure. Similarly, generic,
Morley sequence, (in)dependent, transcendental or algebraic refer to the theory
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ACF0, unless otherwise specified. From now no, acl(M) denotes the field theoretical
algebraic closure of M .

Note 6.1. Let B ⊆ A as above. If A has a green basis overB, that is A = 〈Ü(A)B〉,
then the previous definition agrees with the definition of δ(A/B) in Section 3. In
particular, property (e) in Definition 4.7 holds for green realizations of a code
instance ϕα(x̄, b̄).

Given B ⊆ A, we say that B is strong in A, if δ(A′/B) ≥ 0 for every A′ = 〈A′〉 ⊂
A f.g over B. We denote it by B ≤ A. If there is some b̄ ∈ B generating B, then
we write b̄ ≤ A in case B ≤ A. Similarly, set δ(ā/b̄) := δ(〈āb̄〉/〈b̄〉).

Lemma 6.2. Suppose all structures can be embedded into a common L∗-structure
M . Then:

(1) For B ⊆ C ⊆ A, we have δ(A/B) = δ(C/B) + δ(A/C).
(2) δ(〈AB〉/B) ≤ δ(A/A ∩B). (Submodularity)
(3) If C ≤M and C′ ≤M , then C ∩ C′ ≤M .
(4) For every A ⊆ M there exists a unique A ⊆ C = 〈C〉 ≤ M minimal such.

We call such a set the strong closure of A (in M) and denote it by clM (A).
(5) If (Ai)i<α is an increasing sequence with Ai ≤ K for all i, then

⋃

i Ai ≤M .

Now consider the class of L∗-Structures K := {M | ∅ ≤M}. Unlike in [16] we are
not interested in L∗-structures whose underlying LRing-structure is an algebraically
closed field but mere expansions of structures in D with hereditarily non-negative
predimension function δ.

Assumption 6.3. From now on, δ will be as in in (6.1). A realization of a code
or a difference sequence will consist exclusively of green elements, unless otherwise
specified. Likewise, a minimal prealgebraic extension M ≤ N in K is a minimal
prealgebraic extension of structures N/M in D such that N has a green basis over
M .

Given a strong extension B ≤ A in K with l. dimQ(A/B) < ∞, we can find
a decomposition B = A0 ≤ A1 ≤ . . . ≤ An−1 ≤ An = A such that Ai+1/Ai is
minimal strong for all i < n. Note that a strong extension M ≤ N in K (M ( N)
is minimal (strong) if there is no M ′ = 〈M ′〉 with M < M ′ ≤ N . The following
result is easy to prove.

Lemma 6.4. Let B ≤ A be a minimal extension. One of the following cases holds:

(1) algebraic: Ü(A) = Ü(B) and A = 〈Ba〉 for some a ∈ acl(B) \ B. Then,
δ(A/B) = 0.

(2) white generic: Ü(A) = Ü(B) and A = 〈Ba〉 for some element a transcen-
dental over B. Then, δ(A/B) = 2.

(3) green generic: A contains a basis consisting of a green singleton a over B.
Moreover, a is transcendental over B and δ(A/B) = 1.

(4) minimal prealgebraic: B ≤ A is minimal prealgebraic as in 6.3, that is, A
contains a green basis ā over B such that the (strong) type of ā over B is
minimal prealgebraic. In this case δ(A/B) = 0.

The class K can be easily axiomatized as shown in [16]:

Theorem 6.5. Let (M, Ü(M)) be an L∗-expansion of an algebraically closed field
of characteristic 0. Then M ∈ K if and only if the following (definable) conditions
hold:
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(1) Ü(M) is a trosion-free divisible multiplicative subgroup of M .

(2) Ü(M) has no non-trivial algebraic points.
(3) For every ∅-definable variety V (x̄) ⊆ (C∗)2n+1 of dimension n with as-

sociated tori {T0, . . . , Tr} as in 2.2, then ā ∈ Ti for some i > 0 for all

ā ∈ V ∩ Ü(M).

Note that (2) follows from (1) and (3).
The class K has the amalgamation property with respect to strong embeddings.

Moreover, it has the JEP and contains only countably many f.g. structures up to
isomorphism. Hence, the Fräıssé-Hrushovski limit Mω of the subcollection of f.g.
structures in (K,≤) exists. We call Mω the generic model of K. Let Tω be the
L∗-theory of Mω. Recall the following result from [16]:

Theorem 6.6. The generic model Mω is ω-saturated. Its theory Tω is ω-stable of
Morley rank ω · 2. Moreover, Ü(Mω) has Morley rank ω.

Note 6.7. Let Vz̄(x̄) : z̄ |= θ) be a family of code varieties and ϕ1(x̄, z̄) as in Lemma

4.4. Then, for all b̄ |= θ, the formula ϕ1(x̄, b̄)∧
∧n

i=1 Ü(xi) defines a strongly minimal
set in the theory Tω.

7. Green counts

This section contains the main result of a combinatorial flavour, which will be
extremely useful in order to show that the generic model Mω can be collapsed into
a finite rank one.

Definition 7.1. Let A andM be elements in K with a common strong substructure
B. An L∗-structure M ′ in K is an amalgam of A and M over B if A and M are
strongly embedded in M ′ over B and M ′ = 〈M,A〉 (after identification of A and M
with their images under their respective embeddings). In case M and A (or rather,
their images in M ′) are algebraically independent over B and M ∩A = B, then M ′

is a free amalgam.

Following [16] we obtain the following:

Lemma 7.2. Given M , A and B in K with B ≤ A and B ≤ M . Then there is
an amalgam M ′ in K of A and M over B such that A and M are algebraically
independent over B. If B is algebraically closed in A or in M , then the amalgam
can chosen to be a free amalgam.

The following Lemma yields a lower bound for the length of a difference sequence
for a good code in order to recover a Morley segment inside the sequence over a
strong subset of parameters.

Lemma 7.3. For every code α and every natural number n there exists a positive
integer λα(n) = λ ≥ 0 such that given any strong extension M ≤ N in K and a dif-
ference sequence (ē0, . . . , ēµ) for α in N with canonical parameter b̄, we have that if
µ ≥ λ then either the canonical parameter of a λ-derived sequence of (ē0, . . . , ēµ) lies
in acl(M), or the sequence (ē0, . . . , ēµ) contains a Morley subsequence for ϕα(x̄, b̄)
over M of length n.
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Proof. Given (ē0, . . . , ēµ) as above such that first part of the statement does not
hold, define:

X1 = {i ∈ [mα, µ] : ēi generic over M ∪ {ē0, . . . , ēi−1}},

X2 = {i ∈ [mα, µ] : ēi ⊆ 〈M ∪ {ē0, . . . , ēi−1}〉},

X3 = [mα, µ] \ (X1 ∪X2).

After possible permutation of the set of indices, we may assume that X1 < X3 < X2

(note that we may have indices of X2 go to X3 and indices of X3 land in X1). Since
b̄ ∈ dcl(ē0, . . . , ēmα−1), then by Property (e)

δ(ēi/M, ē0, . . . , ēi−1) ≤ −1 for i ∈ X3 and

δ(ēi/M, ē0, . . . , ēi−1) = 0 for i ∈ X1 ∪X2.

It follows from M ≤ N that

0 ≤ δ(ē0, . . . , ēµ/M) ≤ δ(ē0, . . . , ēmα−1/M) +

µ
∑

i=mα

δ(ēi/M, ē0, . . . , ēi−1)

≤ mαnα + (−1)|X3| ,

therefore |X3| ≤ mαnα.
Let now r = mα + |X1|+ |X3|, and s = r(nα +1). Take I ⊆ {ēr, . . . , ēµ} of cardi-

nality |I| = rnα + 1. To simplify the notation, assume that I = {r, . . . , s}. Choose
varieties W0 ⊂ V0, . . . ,Wt ⊂ Vt (with the Vi’s irreducible) such that ψα(x̄0, . . . , x̄s)
equals

⋃

i≤t(Vi \Wi). Let T0, . . . , Tℓ be the associated tori to the Vi’s as in 2.2. The

point (ē0, . . . , ēs) lies in some Vi0 \Wi0 for some i0 ≤ t. Let W be its locus over
acl(M). Choose W ⊆W ′ ⊆ Vi0 maximal such that cd(W ′) ≤ cd(W ). By construc-
tion W ′ is cd-maximal, so there is some j ∈ {0, . . . ℓ} such that Tj is its minimal
torus. Fix some m̄ in W ′ ⊆ m̄Tj ∩ Vi0 . We may assume that m̄ ∈ acl(M), since
W ⊆ m̄Tj by acl(M)-definability of W ′. Choose (ā0, . . . , ās) a generic point of W ′

over acl(M) and paint it green. Then, the point lies in Vi0 \Wi0 , since (ē0, . . . , ēs)
was an specialization of (ā0, . . . , ās) and Vi0 \ Wi0 is Zariski open in its closure.
Therefore ψα(ā0, . . . , ās) holds. Note that

r · nα ≥ l. dimQ(ē0, . . . , ēr−1/M) = l. dimQ(ē0, . . . , ēs/M) ≥ cd(W ) ≥ cd(W ′)

=
∑

i≤s

l. dimQ(āi/ acl(M), ā0, . . . , āi−1) − dim(āi/ acl(M), ā0, . . . , āi−1)

≥
∑

r≤i≤s

l. dimQ(āi/ acl(M), ā0, . . . , āi−1) − dim(āi/ acl(M), ā0, . . . , āi−1).

Property (e) yields that δ(āi/ acl(M), ā0, . . . , āi−1) ≤ 0 for i ≥ r ≥ mα, that is,

2 dim(āi/ acl(M), ā0, . . . , āi−1) ≤ l. dimQ(āi/ acl(M), ā0, . . . , āi−1).

Hence, if āi /∈ 〈acl(M), ā0, . . . , āi−1〉 then

l. dimQ(āi/ acl(M), ā0, . . . , āi−1) − dim(āi/ acl(M), ā0, . . . , āi−1) ≥ 1.

Therefore, there is some t ∈ {r, . . . , s} with āt ∈ 〈acl(M), ā0, . . . , āt−1〉. The linear
dependence will be determined by the coset m̄Tj. So m̄Tj also determines that
ēt ∈ 〈acl(M), ē0, . . . , ēt−1〉.

Consider now all possible pairs (t, j) as above. This determines a (rnα+1)(ℓ+1)-
coloring of all (rnα + 1)-subsets of {r, . . . , µ}. By (finite) Ramsey’s theorem, there
is some number µ0, such that for µ ≥ µ0 there is a monochromatic subset I ⊆
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{r, . . . , µ} of cardinality |I| ≥ mα+rnα+1. Equivalently, there is some t ∈ {r, . . . , s}
and some j ≤ ℓ with

ēit
∈ 〈acl(M), ē0, . . . , ēr−1, ēir

, ēir+1
, . . . , ēit−1

〉,

for all ir < · · · < is in I. Moreover, the linear dependence comes from some m̄Tj

with m̄ in acl(M) (note that the tuple m̄ ∈ acl(M) may change). Let γi be the
(t + i)th element in I. For i > 0 we have that ēγi

ē−1
γ0

lies in acl(M). Hence, the
canonical parameter of the difference sequence lies in

acl(∂γ0
(ē0, . . . , ēµ)) ⊆ acl(M),

which contradicts our assumption.
Hence, there is an upper bound for µ depending on r, hence a lower bound for

X1 depending on µ. �

8. Prealgebraicity go home!

Choose now finite-to-one functions µ∗, µ : C → N such that:

µ∗(α) ≥ nαkα + 1,

µ∗(α) ≥ λα(mα + 1),

µ(α) ≥ λα(µ∗(α)).

where λα is the function obtained in Lemma 7.3.

Definition 8.1. Let Kµ be the subcollection of elements M in K such that no good
code α has a (green) difference sequence in M of length at least µ(α) + 1.

The class Kµ is universally axiomatizable relative to ACF0. We want now to
obtain a theory T µ whose models lie in Kµ. Moreover, green prealgebraic exten-
sions of strong subsets will become algebraic in T µ. In order to ensure that T µ

is complete, we will impose that every good code attains the maximal number of
realizations and moreover describe all this in an elementary way.

Lemma 8.2. Let M ∈ Kµ and M ′ ∈ K be a minimal prealgebraic extension of M
not in Kµ. Given a good code α and a difference sequence (ē0, . . . , ēµ(α)) in M ′

with canonical parameter b̄ in acl(M), then there exists some i such that all ēj’s
with i 6= j lie in M and ēi is an M -generic realization of ϕα(x̄, b̄) which generates
M ′ over M .

Proof. We may assume that M is algebraically close, for otherwise we may define an
L∗-structure on acl(M),by setting Ü(acl(M)) = Ü(M); minimality of the extension
M ′/M yields that M is algebraically closed in M ′ so we could replace M ′ by
〈M ′ acl(M)〉. Since M ≤ M ′, then it follows from property (e) that for each j
either ēj lies in M or is a generic realization of ϕα(x̄, b̄) over M . Since M ∈ Kµ,
there must be some generic ēi. By minimality of the extension, it follows that
M ′ = 〈Mēi〉. Suppose there is another M -generic realization ēj different from
ēi. Then M ′ = 〈Mēi〉 = 〈Mēj〉, so there is some tuple m̄ in M and a toric
correspondence induced by some T ∈ G(α, α) with

(ēi · m̄, ēj) ∈ T.

Let ē′j := ēi · m̄. In particular, ē′j · ē
−1
i ∈M . Since ēi is M -generic, then

ēi |⌣
b̄

ē′j · ē
−1
i ,
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which contradicts property (l) of a difference sequence. �

Corollary 8.3. Let M ∈ Kµ and M ′ ∈ K be a minimal extension of M . If
l. dimQ(M ′/M) = 1, then M ′ lies also in Kµ. Otherwise, M ′/M is minimal preal-
gebraic, and M ′ does not lie in Kµ if and only if there is some good α ∈ C and a
difference sequence (ē0, . . . , ēµ(α)) for α in M ′ such that one of the following holds:

a) ē0, . . . , ēµ(α)−1 lie in M and 〈M, ēµ(α)〉 = M ′. Moreover, α is the unique
good code describing the extension M ′ ≥M .

b) There is some subsequence of length µ∗(α) which is a Morley sequence for
ϕα(x̄, b̄) over Mb̄, where b̄ is the canonical parameter of (ē0, . . . , ēµ(α)).

Proof. Consider first the case l. dimQ(M ′/M) = 1. If Ü(M ′) = Ü(M), then
there are no new green difference sequences in M ′, so M ′ ∈ Kµ. Otherwise,
l. dimQ(Ü(M ′)/M) = 1 and M ′ = 〈Ü(M ′),M〉 (the green generic case). Suppose
M ′ is not inKµ, then there is a good code α and a difference sequence (ē0, . . . , ēµ(α))

for α in M ′ witnessing this fact. Let b̄ be the canonical parameter of some derived
sequence and ē be a generic element over Mb̄. Then

l. dimQ(M ′/M) ≥ l. dimQ(ē/Mb̄) ≥ 2,

which contradicts our assumption. By Lemma 8.2 there is no such derived sequence.
However, Lemma 7.3 yields a contradiction since µ(α) ≥ λα(µ∗(α)) and µ∗(α) ≥ 1.

Let now M ′ be a minimal prealgebraic extension of M . If a) or b) hold, then
clearly M ′ does not belong to Kµ. Conversely, if M ′ is not in Kµ, then there is
some good code α and a difference sequence (ē0, . . . , ēµ(α)) for α in M ′ witnessing

this fact. Let b̄ be its canonical parameter. If we may choose the difference sequence
such that b̄ lies in acl(M), then case a) holds by Lemma 8.2. Otherwise no difference
sequence has canonical parameter in acl(M), which yields case b) because µ(α) ≥
λα(µ∗(α)) by Lemma 7.3.

In order to show that α is uniquely determined, consider another good code α′

different from α with M ′ = 〈M, ēµ(α′)〉. Then nα = nα′ = l. dimQ(M ′/M) and
the locus of (ēµ(α), ēµ(α′)) over M determines a coset of a torus in G(α, α′). Since
both α and α′ are good, G(α, α′) = ∅ by construction, obtaining hence the desired
contradiction. �

Corollary 8.4. Given a good code α there is a ∀∃-sentence χα such that every
structure M in Kµ satisfies χα if and only if it contains no minimal prealgebraic
extension in Kµ given by α.

Proof. Let α ∈ C, M in Kµ and b̄ ∈M such that a generic realization ā of ϕα(x̄, b̄)
generates a minimal prealgebraic extension M [ā] := 〈Mā〉 over M . If M [ā] does
not belong to Kµ, either case a) or b) in 8.3 hold.

a) is equivalent to the existence of some good code α′ and a difference sequence
(ē0, . . . , ēµ(α′)) in M ′, whose first µ(α′) many elements (and hence its canonical
parameter) lie in M and M [ā] = 〈Mēµ(α′)〉. By uniqueness, α = α′. Since M ≤
M [ā], it follows that ēµ(α) is M -generic. Therefore, ā can be mapped to ēµ(α)

over M by some Q–basis change. Equivalently, there is some green tuple m̄ ∈ M
and some torus T ∈ G(α, α) such that T induces a toric correspondence between
ψα(ē0, . . . , ēµ(α)−1, x̄) and ϕα(x̄ · m̄, b̄). Finiteness of G(α, α) allows us to express

this fact by an existential formula over b̄.
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b) implies that there is some good code β and a difference sequence (ē0, . . . , ēµ(β))
in M [ā] with µ∗(β) many M -linearly independent elements. We need only consider
finitely many such β′s since

nβµ
∗(β) ≤ l. dimQ(M [ā]/M) = nα.

Assume first the following
Assumption: ψβ equals V1 \W1, where V1 is a irreducible variety and W1 ( V1

is a proper subvariety, both acl(∅)-definable.
Let V0 = Vα(x̄, b̄) be the corresponding code variety for ϕα(x̄, b̄), that is, the

locus of ā over acl(M). Set V = V0 ×V1 and let {T0, . . . , Tr} be the tori associated
to V as in 2.2. Take W ⊆ V to be the locus of (ā, ē0, . . . , ēµ(β)) over acl(M).
Note that cd(W ) = cd(V0) = kα by 3.2. Since W projects generically onto V0,
then cd(W ′) ≥ cd(W ) for all W ′ ⊇ W . Let now T be the minimal torus of W
and m̄ ∈ M such that W ⊆ m̄T . The coset m̄T contains hence the green tuple
(ā, ē0, . . . , ēµ(β)).

We call a torus coset c̄T gay (as in colorful, let the distinction be made) if it

contains a green tuple . In case T is given by the equations
∏

x
λij

i = 1 (j = 1, . . . , d),

it is easy to see that c̄T is gay if and only if c′j :=
∏

c
λij

i is green for j = 1, . . . , d.
If c̄T is gay and T ⊆ T ′ (that is, T ′ lies on top of T ), then c̄T ′ is also gay.

Choose now some M -definable W ′ maximal such that cd(W ′) = cd(W ) contain-
ing W . Hence, W ′ is cd-maximal and its minimal torus equals some Ti. Moreover,
W ′ ⊆ m̄Ti. Since m̄T ⊆ m̄Ti and m̄T is gay, so is m̄Ti. Let (ā∗, ē∗0, . . . , ē

∗
µ(β))

be generic in W ′ over M . We may assume that ā∗ = ā since they have the same
M -type. It follows from cd(W ′) = cd(W ) = cd(V0) that

l. dimQ(ā, ē∗0, . . . , ē
∗
µ(β)/ acl(M))− dim(ā, ē∗0, . . . , ē

∗
µ(β)/ acl(M))

= l. dimQ(ā/ acl(M)) − dim(ā/ acl(M))

so
l. dimQ(ē∗0, . . . , ē

∗
µ(β)/Mā) dim(ē∗0, . . . , ē

∗
µ(β)/Mā) =: ℓ.

Choose now an Lmult-basis f0, . . . , fℓ−1 in (ē∗0, . . . , ē
∗
µ(β)) over Mā. The elements

(f0, . . . , fℓ−1) are hence algebraically independent over Mā. Gayness of m̄Ti yields
a structure N in K if we paint (ā∗, ē∗

≤µ(β)) green (after closing it under 〈·〉). Note

that
N = 〈Māē∗0, . . . , ē

∗
µ(β)〉 = 〈M [ā]f0, . . . , fℓ−1〉,

where f0, . . . , fℓ−1 is a tuple of green independent generic elements. Set Fi :=
〈Māf0, . . . , fi−1〉 and observe that Fi ≤ Fi+1 gives a tower of green generic exten-
sions for 0 ≤ i ≤ ℓ− 1. By Collorary 8.3 (repeatedly) we have that:

(*) M [ā] ∈ Kµ if and only if N ∈ Kµ.

Now, (ē0, . . . , ēµ(β)) is a specialization of (ē∗0, . . . , ē
∗
µ(β)), both lying in F . By as-

sumption ψβ is Zariski open in F , so |= ψβ(ē∗0, . . . , ē
∗
µ(β)) since (ē0, . . . , ēµ(β)) realizes

ψβ. Therefore, the existence of a green difference sequence for β (of length µ(β)+1)
implies the existence of another one in N = M [ā][f̄ ], which may be obtained by
only finitely many possibilities. Conversely, it suffices to ensure the existence of
(ē∗, . . . , ē∗

µ(β)) ∈ N to conclude that M [ā] 6∈ Kµ by (*). Consider the following

definable conditions:

There is a tuple m̄ ∈ M and an irreducible component W ′ of V ∩ m̄Ti (where
V = V0 × V1 and V0 = Vα(x̄, b̄) is as above) such that:
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(1) The coset m̄Ti is gay.
(2) W ′ projects generically onto V0.
(3) cd(W ′) = cd(V0).
(4) |= ψβ(ē∗0, . . . , ē

∗
µ(β)) for generic (ā∗, ē∗0, . . . , ē

∗
µ(β)) in W ′.

Therefore, we obtain an existential sentence over b̄ for each Ti. The disjunction of
all these formulae yields the desired sentence.

For the general case, decompose ψβ into a finite union of locally closed sets
Vi \Wi (for 1 ≤ i ≤ t). We proceed as above for each i and form the disjunction of
all the sentences so obtained. �

9. Fräıssé à la verte

This section shows that Kµ has the amalgamation property with respect to
strong embeddings. Hence, we obtain a rich field as in [15]. Work done in previous
sections yields now the following key result:

Lemma 9.1. Let A, B and M be structures in Kµ, where B is a common strong
substructure of both A and M . Let M ′ be their free amalgam over B and consider a
difference sequence (ē0, . . . , ēµ(α)) in M ′ for some good code α. Then there is some
derived sequence whose canonical parameter lies either in acl(M) or in acl(A).

Proof. Suppose the statement does not hold. Then, find ē0, ē1, . . . , ēmα
of length

mα + 1 which is a Morley sequence over both M and A after applying Lemma 7.3
twice by choice of µ(α) and µ∗(α). Let E = {ē0, . . . , ēmα−1

}. The canonical pa-

rameter b̄ lies in dcl(E) and

ēmα
|⌣
b̄

ME und ēmα
|⌣
b̄

AE .

Decompose each tuple in E as a product of a green tuple in M and one in A and
define EM (resp. EA) to be the collection of these factors in M (resp. A). Set
E′ = EM ∪ EA. Then b̄ ∈ dcl(E′) and by interdefinability of E und E′ over M
(resp. over A), we conclude that

ēmα
|⌣
b̄

ME′ und ēmα
|⌣
b̄

AE′ ,

and
ēmα

|⌣
BE′

M und ēmα
|⌣

BE′

A .

Let ēmα
= m̄ · ā with m̄ in M and ā in A. Since M |⌣B

A then M |⌣BE′
A, so

{ēmα
, m̄, ā} is a pairwise BE′-independent triple. This contradicts Lemma 5.2 by

Lemma 5.1, since stp(ēmα
/BE′) will be the generic type of a torus coset. �

An embedding B in A is strong if the image of B in A is a strong substructure.

Theorem 9.2. Kµ has the amalgamation property with respect to strong embed-
dings.

Proof. let B ≤ M and B ≤ A be structures in Kµ. We need to find a strong
extension M ′ of M in Kµ with B ≤ A′ ≤ M ′, where A and A′ are B-isomorphic.
Decomposing both B ≤ A and B ≤ M in minimal extensions, we may reduce it
to the case where both A and M are minimal extensions of B. If any of them
is algebraic, add the corresponding elements to the 〈·〉-closure (we obtain a new
structure in Kµ since there are no new green points).
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Otherwise, we may consider the free amalgam M ′ of M and A over B by
Lemma 7.2. If M ′ ∈ Kµ, we are done. Otherwise, we need only show that M
and A are B-isomorphic. It follows from Corollary 8.3 that both M and A are
minimal prealgebraic over B. Note that only the first case in Lemma 9.1 may oc-
cur, so there is a good code α and a difference sequence (ē0, . . . , ēµ(α)) in M ′ with

canonical parameter b̄. By symmetry we may assume that b̄ lies in acl(M). After
possible permutations we may assume by Lemma 8.2 that ē0, . . . , ēµ(α)−1 lie in M
and ēµ(α) is an M -generic realization of α.

Case 1. There is some (µ(α) − 1)-derived difference sequence with canonical
parameter in acl(B).

Work hence with the above sequence, which we will still denote by (ē0, . . . , ēµ(α)).

It usffices to show that ēµ(α) lies in A. Otherwise, ēµ(α) is generic in ϕα(x̄, b̄) over
A and M , so independent from A and from M over B. Find two green tuples
ā ∈ A and m̄ ∈M with ēµ(α) = m̄ · ā. Observe that ēµ(α), ā and m̄ are pairwise B-
independent, whihc contradicts Lemma 5.2 by Lemma 5.1. Minimal prealgebraicity
of A over B implies that A = 〈B, ēµ(α)〉. Since A ∈ Kµ, there is some ēi in M \B.
Since B ≤ M , then ēi is B-generic by property (e). Hence, the map ēi 7→ ēµ(α)

induces a B-isomorphism between A and M .

Case 2. No (µ(α) − 1)-derivation has canonical parameter in acl(B).

As above decompose ēµ(α) = m̄ · ā with m̄ ∈ M and ā ∈ A both green tuples.
Since ēµ(α) is M -generic, then 0 = δ(ēµ(α)/M) = δ(ā/M), so ā generates A over
B. Apply now Lemma 7.3 to B ≤ M ′ and (ē0, . . . , ēµ(α)). There is some Morley

segment of length µ∗(α) over Bb̄.
Since

µ∗(α) ≥ nαkα + 1 > nα ≥MR (m̄/Bb̄),

there is some ēi in M with m̄ |⌣Bb̄
ēi. In particular, ēµ(α) and ēi have the same

type over Bb̄m̄, and so do ā = m̄ · ē−1
µ(α) and m̄ · ē−1

i . By minimality, ā 7→ m̄ · ē−1
i

induces a B-isomorphism between A and M . �

Using notation developed by Poizat [15] we say that an L∗-structure M in Kµ

is rich if for every f.g. B ≤ M and every f.g. strong extension B ≤ A in Kµ there
is some strong substructure A′ ≤ M with A ≃B A′. Since every algebraic strong
extension of an element in Kµ lies again in Kµ, it follows that rich structures are
algebraically closed fields.

Corollary 9.3. There is a (unique upto isomorphism) countable rich structure in
Kµ. Moreover, all rich structures are L∞,ω-equivalent.

10. Axioms for T µ

Recall that given ā, B ⊆ M ∈ K we say that B is strong in M if 〈B〉 ≤ M and
we denote by δ(ā/B) the quantity δ(〈Bā〉/〈B〉). Let T µ be the elementary theory
of rich fields in Kµ. We will show in this section that T µ is axiomatizable and
model-complete.

Definition 10.1. Let M � T µ and B be some subset of M . Denote by clMd (B)
the collection of all f.g. A ⊆M with δ(A/ cl(B)) = 0. Set dM (A/B) := d(A/B) :=
δ(cl(〈A,B〉)/ cl(B)).
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Note that clMd (B) = {a ∈M : d(a/B) = 0}.
It is easy to see [16] that:

Lemma 10.2. For any structure in K the following holds:

(1) d(āc̄/B) = d(ā/Bc̄) + d(c̄/B).

(2) The closure operator cld defines a pregeometry over the set Ü of green points
whose associated dimension function is d.

Lemma 10.3. Let e ≥ 0, a subset B = 〈B〉 ≤M ∈ K and a tuple ā ∈M . Then:

(1) If δ(ā/B) = e, then there is some existential L∗-formula τδ(x̄, z̄) and a
tuple b̄ ∈ B such that:

• |= τδ(ā, b̄),
• for every ā′ and b̄′ ∈ B′ ⊆M ′ ∈ K with |= τδ(ā

′, b̄′), then δ(ā′/B′) ≤ e.
(2) If d(ā/B) = e, then there is an existential L∗-formula τd(x̄, z̄) and a b̄ ∈ B

such that:
• |= τd(ā, b̄),
• for every ā′ and alle b̄′ ∈M ′ ∈ K with |= τd(ā

′, b̄′), then d(ā′/b̄′) ≤ e.

Proof. We need only prove part (1). Hence, choose ā ∈ M and B ≤ M as above.
Let B = A0 ≤ A1 ≤ . . . ≤ An = 〈Bā〉 =: A be the decomposition of B ≤ A into
minimal strong embeddings. Then e = δ(ā/B) =

∑n
i=1 δ(Ai/Ai−1). Therefore we

may assume that n = 1, that is, B ≤ A is minimal strong. Four cases may occur
by Lemma 6.4. Cases (1)–(3) are easy so we may hence consider case (4), that is,
a minimal prealgebraic extension. Let c̄ be a green basis for A/B and b̄ ∈ B with
l. dimQ(āc̄/B) = l. dimQ(āc̄/b̄) and āc̄ |⌣ b̄

B. Let α ∈ C be unique encoding a/B.

Choose some quantifier-free L∗-formula τ̃ (x̄, ȳ, z̄) with |= τ̃ (ā, c̄, b̄) such that:

• The tuples ā and c̄ are interdefinable over b̄ (explicitly given).

• |= τ̃ (x̄, ȳ, z̄) →
∧

i Ü(yi).
• c̄ realizes some ϕα(ȳ, b̄1), where b̄1 lies in acl(b̄) (explicitly given).

By property (e) the formula τδ(x̄, z̄) := ∃ȳ τ̃ (x̄, ȳ, z̄) satisfies the required conditions,
because δ(ā′/b̄′) = δ(c̄′/b̄′) ≤ δ(c̄′/ acl(b̄′) ≤ 0 if |= τ̃ (ā′, c̄′, b̄′).

The general case may be reduced to the minimal one by considering some tuple
to express the decomposition into minimal extensions. �

Given M ⊆ N both elements in K such that M is L∗-existentially closed in
N , it follows from 10.3 that M ≤ N : otherwise, there is a tuple ā ∈ M with
dM (ā) > dN (ā) = e. Choose some τd as in 10.3 such that N |= τd(ā, b̄) for some
b̄ ∈ 〈∅〉 ⊆ M . Hence, M |= τd(ā, b̄) (since M is existentially closed in N), which
contradicts dM (ā/b̄) > e. Hence, the following holds:

Lemma 10.4. If M is an elementary submodel of N � T µ, then M is strong in
N . �

Define now an L∗-theory T̃ µ as follows:

(1) Every model lies in Kµ.
(2) Every model is an algebraically closed field of characteristic 0.
(3) Given a model M , a good code α and a parameter b̄ in M , then there is no

extension of M in Kµ given by a green M -generic realization of ϕα(x̄, b̄).
(4) In some ω-saturated model there are infinitely many d-independent green

generic elements.
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Poizat [16] axiomatized universally condition “∅ ≤ M”: since ψα(x̄0, . . . , x̄ν)
are quantifier-free, then axiom (1) is universal. Both ACF0 and hence (2) are
inductively axiomatizable. Corollary 8.4 yields the inductively axiomatization of
(3), and the ∃∀-axiomatization of (4) follows from Lemma 10.3.

A key result is the following:

Theorem 10.5. An L∗-structure M is rich if and only if it is an ω-saturated model
of T̃ µ. In particular, T̃ µ = T µ and T̃ µ is complete.

Proof. The proof is divided into two parts: first, we show that every ω-saturated
model of T̃ µ is rich in Kµ. Then show that all rich structures are models of T̃ µ,
which yields ω-saturation of rich structures because they are all ∞-equivalent by
Corollary 9.3.

Hence, let M be an ω-saturated model of T̃ µ, a finite subset B ≤M and A ≥ B
a f.g. structure in Kµ. We need to embedd A in M strong over B. We may assume
that A/B is minimal strong. By Lemma 6.4 there are four possibilities:

A/B is algebraic. we are done by axiom (2).

A/B is minimal prealgebraic. Consider the free amalgamM ′ of M and A over B.
Moreover, let α be the good code encoding A/B. Axiom (3) implies that M ′ is not
in Kµ. Since Kµ has the amalgamation property with respect to strong embeddings
by Theorem 9.2, then A must be already embeddable in M over B.

A/B is green generic, i.e. generated by a green transcendental element a. Axiom
(4) and ω-saturation imply that M contains infinitely many green d-independent
generic elements (gi)i∈N. Since d(B) = e <∞, there is some i ∈ N with d(gi/B) =
1. Hence, 〈Bgi〉/B is a green generic extension (which lies in M), and the map
a 7→ ei yields a strong embedding of A in M over B.

A/B is white generic, i.e. generated by a white generic element w over B and

Ü(A) = Ü(B). It is easy to see that the sum w′ of two B-generic d-independent
green elements g1 and g2 is white B-generic, that is, d(w′/B) = 2. As above we
can find such elements g1, g2 in M , so we are done.

Now, let M be a rich structure in Kµ. In order to show that M |= T µ, we first
show that M is an algebraically closed field. Let a ∈ acl(M) and B ≤M f.g. with
a ∈ acl(B). If a is green, then a in B, because B ≤ M . Otherwise, a is white and

Ü(B) = Ü(〈Ba〉). Hence, the extension 〈Ba〉 ≥ B is in Kµ, so we can realize it in
M over B.

For axiom (3), consider a good code α and some parameter b̄ ∈ M . Let ā be
an M -generic realization of ϕα(x̄, b̄). If 〈Mā〉 ∈ Kµ, then choose some B0 ≤ M
containing b̄. Therefore, 〈B0ā〉 ∈ Kµ and by richness of M , we can find some
ā0 ∈ M with 〈B0ā〉 ∼= 〈B0ā0〉 =: B1 ≤ M . Iterating this process with B1, we can
find a sequence B0 ≤ B1 ≤ B2 ≤ . . . in M , such that Bi+1 := 〈Biāi〉 ∼= 〈Biā〉. Then
ā1, ā2, . . . is a sufficiently long green Morley sequence for ϕα(x̄, b̄), whose difference
realizes ψα, contradicting M ∈ Kµ.

Axiom (4) is satisfied by M by richness. �

Recall that given A ⊆ M ∈ K, we define cl(A) as the smallest 〈·〉-closed subset
containing A with cl(A) ≤M . If A is f.g., so is cl(A).

Corollary 10.6. T µ is complete. Two tuples ā and ā′ in two models M and M ′

have the same type if and only if there is some L∗-isomorphism f from clM (ā) to
clM ′(ā′), mapping ā to ā′.
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Proof. The rich field obtained in Section 9 is a model of T µ by Theorem 10.5. Given
two models M and M ′ of T µ, we may replace them by elementary extension and
assume that they are ω-saturated. Hence they are rich by Theorem 10.5, hence
elementarily equivalent by Corollary 9.3. So are M and M ′.

In order to prove the second statement, suppose that both M and M ′ are ω-
saturated, since by Lemma 10.4 the closure clM (ā) does not change. Hence, M and
M ′ are rich structures and the map f : clM (ā) → clM ′(ā′) induces a back-and-forth
system, so f is elementary.

Suppose now that ā in M has the same type as ā′ in M ′. Since cl(ā) is in the
algebraic closure (in T µ) of ā, there is an elementary map f from cl(ā) to M ′ by
ω-saturation, mapping ā onto ā′. Let A′ = f(cl(ā)). Hence A′ ≤ M ′ because A′

has the same type as cl(ā′). Therefore, A′ = cl(ā′). �

Corollary 10.7. The theory T µ is model-complete.

Proof. We will give a straight-foward proof due to M. Ziegler. We need only show
that given any two models M and N of T µ with M ⊆ N then M is strong in N .
This implies that clM (ā) = clN (ā) for any ā in M . So the inclusion is elementary
by Corollary 10.6. In particular, we will show the following:

Claim. If M |= T µ and M ⊆ N ∈ Kµ, then M is strong in N .

Otherwise, choose some M ⊆ N1 with minimal l. dimQ(N1/M) = e. Since
M = acl(M), then e ≥ 2. Minimality of e implies that δ(N0/M) ≥ 0 for every
N0 = 〈N0〉 with M ⊆ N0 ( N1. In particular, M ≤ N0. Choose now some N0 with
l. dimQ(N0/M) = e− 1.

−1 ≥ δ(N1/M) = δ(N1/N0) + δ(N0/M)

and δ(N1/N0) ≥ −1 imply that δ(N0/M) ≤ 0. Since M ≤ N0 , the extension
N0/M is prealgebraic in Kµ (i.e. a tower of algebraic and minimal prealgebraic
extensions). Hence, find N ′/M minimal prealgebraic with M ≤ N ′ ≤ N0, which
contradicts axiom (3). �

Note 10.8. One can show that axiom (4) follows already from (1)–(3), by aproxi-
mating a green generic extension by suitable prealgebraic extensions. On the other
hand, the ∀∃-axiomatization follows from model-completeness (Corollary 10.7) by
general model-theoretical arguments.

11. Ranks

We show in this section that T µ has Morley rank 2. Let aclµ denote the algebraic
closure in models of T µ. All model-theoretical notions refer exclusively to T µ, which
we will emphazise with µ if necessary. We will show that aclµ(ā) is the union of all
minimal prealgebraic extensions of cl(ā).

Lemma 11.1. Both closures aclµ and clMd agree in models of T µ.

Proof. If B is f.g., so is cl(B) and contained in aclµ(B). Hence, we may assume
that B is f.g. and strong in M |= T µ.

First, show that clMd (B) ⊆ aclµ(B). Let A ⊂ M be f.g. with δ(A/B) = 0.
Since l. dimQ(A/B) is finite, then we may decompose A/B into a finite sequence
of minimal extensions. If A′ ⊇ B is such that δ(A′/B) = 0, then A′ ≤ M because
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B ≤ M . Hence, we may assume that A/B is minimal. By Lemma 6.4 one of the
following holds:

i) A is algebraic over B (in the field reduct). Hence, A ⊆ aclµ(B).
ii) A is minimal prealgebraic over B. Choose a good code α and some pa-

rameter b̄ in acl(B) encoding A/B by Theorem 4.10. Then, A = 〈Bā〉 for
some generic green realization ā |= ϕα(x̄, b̄). We need only show that all
green realizations of ϕα(x̄, b̄) lie already in M , for otherwise there is some
M 4 N and ā′ ∈ N not completely contained in M . Hence, ā′ is generic
over M cotradicting axiom (3).

For the other inclusion, choose some a ∈M \ clMd (B). Set A = cl(B, a) and observe
that δ(A/B) > 0. Decompose now A/B in minimal extensions B ≤ A0 ≤ A1 ≤
. . . ≤ An = A. Then there is some i < n with δ(Ai+1/Ai) > 0. By Lemma 6.4
we obtain l. dimQ(Ai+1/Ai) = 1 so the extension Ai+1/Ai is either white or green
generic. Corollary 8.3 implies that the free amalgam of Ai+1 and every strong
extension of Ai lies in Kµ. Richness of M implies that there are infinitely many
A′ ≤ M , isomorphic to Ai+1 over Ai. Moreover, they all have the same type over
Ai by Corollary 10.6. So, Ai+1 6⊆ aclµ(Ai), hence a 6∈ aclµ(B), because Ai+1 is
algebraic over 〈B, a〉 and B ⊆ Ai. �

Theorem 11.2. T µ has Morley rank 2 and is uncountably categorical. The white
generic type has Morley rank 2 and the green generic one has Morley rank 1. Al-
gebraic closure is determined by cld-closure in any model of T µ. Moreover, for all
ā and B we have that :

MR(ā/B) = U(ā/B) = d(ā/B).

Proof. Let M be an ω-saturated model of T µ, seen as subset of the monster model
of T µ. We compute MR(a/M) for elements a coming from the monster model.
Since

0 ≤ d(a/M) ≤ δ(a/M) ≤ 2.

there are four cases to consider:

d(a/M) = 0: By Lemma 10.4, we have that a ∈ aclµ(M) = M . So MR(a/M) =
0.

d(a/M) = 1 and a is green: Then 〈Ma〉 is strong in the monster model and
tp(a/M) is the type of the green generic element by Corollary 10.6. Since all other

green generic types are algebraic, then MR(a/M) = 1, so Ü defines a strongly
minimal set.

d(a/M) = 1 with a white: There must be some green point c ∈ cl(〈M,a〉) \M .
Hence, 〈Mc〉 ≤ cl(Ma) and d(a/Mc) = 0. Therefore, a and c are T µ-interalgebraic
over M and by the above case, MR(a/M) = MR(c/M) = 1.

d(a/M) = 2: Then Ü(〈Ma〉) = Ü(M) and 〈Ma〉 is strong in the monster model.
Corollary 10.6 implies that tp(a/M) is the type of the white generic element, that
is, the generic type of the field. Since all other types have Morley rank at most
1, then MR(a/M) ≤ 2. Now, Ü(M) is an infinite group of infinite index in M .
Therefore, MR(a/M) = 2 and T µ has Morley rank 2.

For the last statement, MR(ā/B) = U(āB) = d(ā/B), recall that MR = U holds
on all ℵ1-categorical theories. So Morley rank is additive and the above shows that
MR(a/B) = d(a/B) for elements. Since d is also additive, then we are done. �



DIE BÖSE FARBE 23

Note 11.3. Following an idea of Poizat [16], it is possible to construct, for every
natural number r ≥ 2, a field of Morley rank r with a strongly minimal multiplica-
tive green subgroup, working with the following predimension:

δ(A) = r dim(A) − (r − 1) l. dimQ(Ü(A)).

Moreover, as in [6], the predimension

δ(A) = r dim(A) − l. dimQ(Ü(A))

leeds to a field of Morley rank r with a multiplicative green subgroup of Morley
rank r − 1.

Question 11.4. J. Kirby [12] generalised Theorem 2.2 to semiabelian varieties.
Can this be used to construct a field of finite Morley rank with a non-algebraic
subgroup of an arbitrary semiabelian variety?
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